A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods.
نویسندگان
چکیده
Numerous efforts have been devoted to investigating crash occurrence as related to roadway design features, environmental factors and traffic conditions. However, most of the research has relied on univariate count models; that is, traffic crash counts at different levels of severity are estimated separately, which may neglect shared information in unobserved error terms, reduce efficiency in parameter estimates, and lead to potential biases in sample databases. This paper offers a multivariate Poisson-lognormal (MVPLN) specification that simultaneously models crash counts by injury severity. The MVPLN specification allows for a more general correlation structure as well as overdispersion. This approach addresses several questions that are difficult to answer when estimating crash counts separately. Thanks to recent advances in crash modeling and Bayesian statistics, parameter estimation is done within the Bayesian paradigm, using a Gibbs Sampler and the Metropolis-Hastings (M-H) algorithms for crashes on Washington State rural two-lane highways. Estimation results from the MVPLN approach show statistically significant correlations between crash counts at different levels of injury severity. The non-zero diagonal elements suggest overdispersion in crash counts at all levels of severity. The results lend themselves to several recommendations for highway safety treatments and design policies. For example, wide lanes and shoulders are key for reducing crash frequencies, as are longer vertical curves.
منابع مشابه
A Poisson-lognormal conditional-autoregressive model for multivariate spatial analysis of pedestrian crash counts across neighborhoods.
This work examines the relationship between 3-year pedestrian crash counts across Census tracts in Austin, Texas, and various land use, network, and demographic attributes, such as land use balance, residents' access to commercial land uses, sidewalk density, lane-mile densities (by roadway class), and population and employment densities (by type). The model specification allows for region-spec...
متن کاملExamining signalized intersection crash frequency using multivariate zero-inflated Poisson regression
In crash frequency studies, correlated multivariate data are often obtained for each roadway entity longitudinally. The multivariate models would be a potential useful method for analysis, since they can account for the correlation among the specific crash types. However, one issue that arises with this correlated multivariate data is the number of zero counts increases as crash counts have man...
متن کاملMultivariate Poisson-Lognormal Models for Jointly Modeling Crash Frequency by Severity
This paper introduces a new multivariate approach for jointly modeling crash counts by severity data based on Multivariate Poisson-Lognormal models. Although the crash frequency by severity data are multivariate in nature, they have often been analyzed by modeling each severity level separately without taking into account correlations that exist among different severity levels. The new Multivar...
متن کاملRe-visiting crash-speed relationships: A new perspective in crash modelling.
Although speed is considered to be one of the main crash contributory factors, research findings are inconsistent. Independent of the robustness of their statistical approaches, crash frequency models typically employ crash data that are aggregated using spatial criteria (e.g., crash counts by link termed as a link-based approach). In this approach, the variability in crashes between links is e...
متن کاملPredict the Stock price crash risk by using firefly algorithm and comparison with regression
Stock price crash risk is a phenomenon in which stock prices are subject to severe negative and sudden adjustments. So far, different approaches have been proposed to model and predict the stock price crash risk, which in most cases have been the main emphasis on the factors affecting it, and often traditional methods have been used for prediction. On the other hand, using Meta Heuristic Alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Accident; analysis and prevention
دوره 40 3 شماره
صفحات -
تاریخ انتشار 2008